Derived Algebraic Geometry VIII: Quasi-Coherent Sheaves and Tannaka Duality Theorems

ثبت نشده
چکیده

1 Generalities on Spectral Deligne-Mumford Stacks 4 1.1 Points of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Étale Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.3 Localic Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4 Quasi-Compactness of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . 18 1.5 Local Properties of Spectral Deligne-Mumford Stacks . . . . . . . . . . . . . . . . . . . . . . . 23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tannaka Duality Revisited

1.1. Background. The goal of this paper is to investigate algebraic stacks through their associated categories of quasi-coherent sheaves (or, better, complexes). To put this investigation in context, note that an affine scheme is completely determined by its ring of functions. Using merely the ring of functions, though, it is difficult to move beyond affine schemes. However, if one is willing t...

متن کامل

Sheaves on Artin Stacks

We develop a theory of quasi–coherent and constructible sheaves on algebraic stacks correcting a mistake in the recent book of Laumon and Moret-Bailly. We study basic cohomological properties of such sheaves, and prove stack–theoretic versions of Grothendieck’s Fundamental Theorem for proper morphisms, Grothendieck’s Existence Theorem, Zariski’s Connectedness Theorem, as well as finiteness Theo...

متن کامل

Se p 20 05 DUALITY AND EQUIVALENCE OF MODULE CATEGORIES IN NONCOMMUTATIVE GEOMETRY

This is the first in a series of papers that deals with duality statements such as Mukai-duality (T-duality, from algebraic geometry) and the Baum-Connes conjecture (from operator K-theory). These dualities are expressed in terms of categories of modules. In this paper, we develop a general framework needed to describe these dualities. In various geometric contexts, e.g. complex geometry, gener...

متن کامل

Duality and Equivalence of Module Categories in Noncommutative Geometry Ii: Mukai Duality for Holomorphic Noncommutative Tori

This is the second in a series of papers intended to set up a framework to study categories of modules in the context of non-commutative geometries. In [3] we introduced the basic DG category PA• , the perfect category of A•, which corresponded to the category of coherent sheaves on a complex manifold. In this paper we enlarge this category to include objects which correspond to quasi-coherent ...

متن کامل

Duality and Equivalence of Module Categories in Noncommutative Geometry

We develop a general framework to describe dualities from algebraic, differential, and noncommutative geometry, as well as physics. We pursue a relationship between the Baum-Connes conjecture in operator K-theory and derived equivalence statements in algebraic geometry and physics. We associate to certain data, reminiscent of spectral triple data, a differential graded category in such a way th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011